Comparative Metabolomic Analysis of the Neuroprotective Effects of Scutellarin and Scutellarein against Ischemic Insult

نویسندگان

  • Hao Tang
  • Yuping Tang
  • Nian-Guang Li
  • Hang Lin
  • Weixia Li
  • Qianping Shi
  • Wei Zhang
  • Pengxuan Zhang
  • Zexi Dong
  • Minzhe Shen
  • Ting Gu
  • Jin-Ao Duan
  • Honglian Shi
چکیده

For more than thirty years, scutellarin (Scu) has been used in China to clinically treat acute cerebral infarction and paralysis. Scutellarein (Scue), the major Scu metabolite in vivo, exhibits heightened neuroprotective effects when compared to Scu. To explore the neuroprotective role of these compounds, we performed ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UHPLC-QTOF/MS) coupled with a pattern recognition approach to investigate metabolomic differences in a rat model of ischemia after treatment with each compound. We examined metabolites in urine, hippocampal tissue, and plasma, and we tentatively identified 23 endogenous metabolites whose levels differed significantly between sham-operated and model groups. Upon pathway analysis, we found an additional 11 metabolic pathways in urine, 14 metabolic pathways in the hippocampal tissue, and 3 metabolic pathways in plasma. These endogenous metabolites were mainly involved in sphingolipid metabolism, lysine biosynthesis, and alanine, aspartate, and glutamate metabolism. We found that metabolic changes after ischemic injury returned to near-normal levels after Scue intervention, unlike Scu treatment, further validating the heightened protective effects exerted by Scue compared to Scu. These results demonstrate that Scue is a potential drug for treatment of ischemic insult.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and protective effect of scutellarein on focal cerebral ischemia/reperfusion in rats.

Scutellarein, the main metabolite of scutellarin in vivo, has relatively better solubility, bioavailability and bio-activity than scutellarin. However, compared with scutellarin, it is very difficult to obtain scutellarein from Nature. Therefore, the present study focused on establishing an efficient route for the synthesis of scutellarein by hydrolyzing scutellarin. Neurological deficit score ...

متن کامل

Synthesis and Bio-Activity Evaluation of Scutellarein as a Potent Agent for the Therapy of Ischemic Cerebrovascular Disease

Scutellarein, the main metabolite of scutellarin in vivo, has relatively better solubility, bioavailability and bio-activity than scutellarin. However, it is very difficult to obtain scutellarein in nature compared with scutellarin. Therefore, the present study focused on establishing an efficient route for the synthesis of scutellarein by hydrolyzing scutellarin. The in vitro antioxidant activ...

متن کامل

Synthesis and Bioactivity Characterization of Scutellarein Sulfonated Derivative.

Scutellarin (1) has been widely used to treat acute cerebral infarction in clinic, but poor aqueous solubility decreases its bioavailability. Interestingly, scutellarin (1) could be metabolized into scutellarein (2) in vivo. In this study, a sulfonic group was introduced at position C-8 of scutellarein (2) to enhance the aqueous solubility of the obtained derivative (3). DPPH (1,1-diphenyl-2-pi...

متن کامل

Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells.

Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant.) Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutella...

متن کامل

Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015